Xylaramide, a New Antifungal Compound, and Other Secondary Metabolites from *Xylaria longipes*

Gudrun Schneider^a, Heidrun Anke^a and Olov Sterner^b

^a LB Biotechnologie, Universität Kaiserslautern, Paul Ehrlich-Straße 23, D-67663 Kaiserslautern, Bundesrepublik Deutschland

b Division of Organic Chemistry 2, University of Lund, P. O. B. 124, S-221 00 Lund, Sweden

Z. Naturforsch. 51c, 802-806 (1996); received May 30/August 8, 1996

Xylaramide, 2,5-Bis(hydroxymethyl)furan, Tyrosol, Xylaria longipes, Antifungal

Xylaramide (1), possessing potent antifungal activity towards *Nematospora coryli* and *Saccharomyces cerevisiae*, was isolated from the culture fluids of the wood-inhabiting ascomycete *Xylaria longipes* together with tyrosol (2), 2,5-bis(hydroxymethyl)furan (3) and 2-hexylidene-3-methylsuccinic acid (4). The latter has been known as a *Xylaria* metabolite for many years. Compounds 2 and 3 have been previously reported from other fungi, whereas 1 is a new natural N-(2-phenylethenyl)-2-hydroxypropanamide. The isolation, structure determination and biological properties of xylaramide are described. The biological activities of the other compounds are included.

Introduction

The genus *Xylaria* belongs to the sphaeriaceous genera of ascomycetes, which are world-wide distributed. Most of them are wood-inhabiting fungi, some causing white-rot (Catechside and Mallett, 1991). The recent interest in Xylaria species has focused on their phytopathogenicity (Nilsson et al., 1989) and their production of enzymes (Wei et al., 1992). The latter reflects their natural habitat and ecological role and suggests a possible application in the biotechnological degradation of lignin and other biotransformations (Siebers-Wolff et al., 1993). Investigations of their secondary metabolism have yielded quite different compounds, e.g. succinic acid derivatives (Anderson et al., 1985), cytochalasins (Edwards et al., 1991, Dagne et al., 1994), terpenoids (Schneider et al., 1995) and polyketides (O'Hagan et al., 1992). The production of certain secondary metabolites was used to determine the inter-generic relationship within the family of the Xylariaceae (Whalley et al., 1986, Whalley and Edwards, 1995).

During a screening of higher fungi for the production of bioactive compounds, extracts of the

Reprint requests to Prof. Dr. H. Anke or Prof. Dr. O. Sterner.

Fax: +49631/2052999. Fax: +46462/228209. culture fluids of *Xylaria longipes*, A19–91, showed antifungal activity. First investigations revealed, that none of the compounds already known from fungi of the genus *Xylaria* was responsible for the antifungal activity. The active constituents were isolated from the culture broths of 20-l fermentations by bioassay-guided fractionation. Besides xylarin, a new antifungal diterpene (Schneider *et al.*, 1995), three compounds with antifungal activity were obtained. A fourth compound crystallized during the isolation of the other compounds. The production, isolation, structural elucidation and biological characterization of the four metabolites

Fig. 1. Structures of Xylaria longipes metabolites.

0939-5075/96/1100-0802 \$ 06.00 © 1996 Verlag der Zeitschrift für Naturforschung. All rights reserved.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

shown in Figure 1, of which xylaramide (1) is a new compound, are reported.

Experimental

Producing Organism

Fruiting bodies of *Xylaria longipes*, A19–91, were collected in Lescun, France in 1991. A herbarium specimen and mycelial cultures are deposited at the LB Biotechnology, University of Kaiserslautern.

Fermentation

For maintenance on agar slants (with 2% agar) and submerged cultivation, the strain was grown on YMG medium composed of (g/l): glucose 4, malt extract 10, yeast extract 4. The pH was adjusted to 5.5 before autoclaving. Fermentations were performed in a Biolafitte C-6 apparatus containing 20 l of YMG medium with agitation (120 rpm) and aeration (3.2 l/min) at 22 °C. 200 ml of a well grown culture in the same medium were used as inoculum. The antifungal activity during fermentation was measured in the agar plate diffusion assay with *Nematospora coryli* as test organism.

Isolation

After ten days of fermentation of Xylaria longipes, A19-91, the culture fluid (18 l) was separated from the mycelia by filtration and passed through a column with Mitsubishi HP21 resin (column size: 6.5 x 30 cm). The resin was washed with water, and the adsorbed materials were eluted with 1.2 l of acetone. Evaporation of the solvent yielded a crude extract (2.6 g), which was fractionated on a silica gel column (Merck 60; 60-200 µm diameter, 110 g) with cyclohexane – EtOAc (3:7) as eluant. Final purification of the antifungal compounds was achieved by preparative HPLC on Merck Lichrosorb Diol (250 x 25 mm, 7 µm). Elution with cyclohexane – tert-butylmethyl ether 4:6 yielded compounds 1, 2 and 4, while compound 3 eluted with cyclohexane - tert-butylmethyl ether 3:7. From 18 l of culture 1.4 mg of xylaramide (1), 14.9 mg of compound 2, 2.9 mg of compound 3, and 25 mg of compound 4 were obtained.

Spectroscopy

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) were recorded at room temperature in CDCl₃ with a Bruker ARX 500 spectrometer with an inverse 5 mm probe equipped with a shielded gradient coil.

COSY, HMOC and HMBC experiments were performed with gradient enhancements using sine shaped gradient pulses, and for the 2D heteronuclear correlation spectroscopy the refocusing delays were optimized for ¹J_{CH}=145 Hz and ²J_{CH}= 10 Hz. The raw data were transformed and the spectra were evaluated with the standard Bruker UXNMR software (rev. 941001). The chemical shifts are given in ppm (with the solvent peaks at 7.26 and 77.0 ppm serving as reference) and the coupling constants J in Hz. EI mass spectra were recorded by a JEOL SX102 spectrometer at 70 eV. The IR spectrum was recorded with a Perkin-Elmer 298 spectrometer, the UV spectrum with a Varian Cary 219 spectrometer, and the optical rotations were measured with a Perkin-Elmer 141 polarimeter at 22°C.

Xylaramide (1), N-(2-phenylethenyl)-2-hydroxypropanamide, was obtained as a colorless oil. $[\alpha]_D$ 0 ° (c 0.2 in chloroform). UV (methanol) λ_{max} (ε): 279 nm (10,600). IR (KBr): 3400, 2925, 1640, 1520, 1280, 1120, 950, 760, and 690 cm⁻¹. ¹H NMR $(CDCl_3, 500 \text{ MHz}), \delta, \text{ mult. } J \text{ (Hz): } 8.39, \text{ brd, } J_{4-}$ $_{NH}$ =11, N-H; 7.47, dd, J_{4-5} =14.6, J_{4-NH} =11, 4-H; 7.32, d, $J_{7-8}=7.2$, 7-H₂; 7.28, dd, $J_{7-8}=7$, $J_{8-9}=7$, 8- H_2 ; 7.18, t, J_{8-9} =7, 9-H; 6.19, d, J_{4-5} =14.6, 5-H; 4.37, q, J_{2-3} =6.9, 2-H; 1.51, d, J_{2-3} =6.9, 3-H₃. ¹³C NMR (CDCl₃, 125 MHz), δ: 171.5 C-1; 135.9 C-6; 128.7 C-8; 126.8 C-9; 125.6 C-7; 121.8 C-4; 114.0 C-5; 68.6 C-2; 21.2 C-3. MS (EI, 70 eV), m/z: $C_{11}H_{13}NO_2$ 191.0955 $(M^+, 56\%,$ requires 191.0946), 119.0748 (100%, C₈H₉N requires 119.0735), 118 (36%), 91 (22%), 84 (21%), 45 (23%).

2,5-Bis(hydroxymethyl)furan (3) was obtained as a colorless oil. UV (methanol) λ_{max} (ϵ): 224 nm (6,100). IR (KBr): 3400, 2930, 1050, and 800 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz), δ , mult.: 6.16, s, 3-H and 4-H; 4.49, -C**H**₂OH; 2.62, brs, -OH. ¹³C NMR (CDCl₃, 125 MHz), δ : 154.1 C-2 and C-5; 108.2 C-3 and C-4; 57.0 -CH₂OH. MS (EI, 70 eV), m/z: 128.0461 (M⁺, 82%, C₆H₈O₃ requires 128.0473), 111 (31%), 97 (100%), 84 (40%), 69 (40%).

According to their spectroscopic data, compounds **2** and **4** were identified as tyrosol and 2-hexylidene-3-methylsuccinic acid (Devys *et al.*, 1976, Anderson *et al.*, 1985).

Biological assays

The assays for antimicrobial activity were performed as described previously (Anke *et al.*, 1989) using an inoculum of 1x 10⁵ cells or spores/ml. Cytotoxic activity against L1210 cells (ATCC CCl 219, mouse), HL60 cells (ATCC CCL240, human),

BHK 21 cells (ATCC CCL 10, hamster) and HeLa S3 cells (ATCC CCL2.2, human) was measured as described previously (Zapf et al., 1995). The phytotoxic effect on germination of Setaria italica and Lepidium sativum were evaluated according to Anke et al., (1989). The nematicidal activity against Caenorhabditis elegans and Meloidogyne incognita were carried out as described by Stadler et al. (1993) and Anke et al. (1995). The lytic activity towards bovine erythrocytes was measured as described previously (Kuschel et al., 1994).

Results and Discussion

From fermentations of Xylaria longipes, A19-91, four natural products were obtained. The most potent antifungal metabolite (1) is a new compound for which we propose the name xylaramide. Its structure was determined by NMR spectroscopy and mass spectrometry. The EI mass spectrum contains essentially two ions, the molecular ion at m/e 191 and the base peak at m/e 119. High resolution EIMS measurements suggest that the elemental composition of xylaramide (1) is $C_{11}H_{13}NO_2$ and that the composition of the base peak is C₈H₉N. The ¹H and ¹³C NMR spectra showed typical signals for a monosubstituted benzene, a trans double bond, a carbonyl group, and a 1-hydroxyethyl group. A broad doublet at 8.4 ppm for an exchangeable proton was observed in the ¹H NMR spectrum, the signal disappeared slowly when D₂O was added to the NMR tube and did not show any correlation in the HMQC spectrum. The structure of xylaramide (1) was determined by long range ¹H-¹³C correlations: 9-H correlated to C-7, 8-H to C-6 and C-8, 7-H to C-5 and C-9, and 5-H correlates to C-4 and C-7, suggesting that C-5 is attached directly to C-6. H-4, which couples to both H-5 and to the exchangeable proton with the coupling constants 14.6 and 11 Hz, respectively, gives HMBC correlations to C-1, C-5 and C-6. 2-H as well as 3-H₃ correlate to C-1, and the suggested structure is the only conceivable that fits the spectroscopic data.

Tyrosol (2) has been isolated from higher fungi and plants like *Ceratocystis* species (Ayer *et al.*, 1986), *Gibberella fujikuroi* (Cross *et al.*, 1963), *Pyricularia oryzae* (Devys *et al.*, 1976), *Candida albicans* (Lingappa *et al.* 1969) and *Ligustrum ovalifolium* (Veer *et al.*, 1957).

The furan **3** was recently reported as a metabolite of *Phellinus linteus*, a wood-inhabiting basidio-

mycete (Song *et al.*, 1994). The paper is in Korean, and the spectroscopic data of the furan **3** are therefore given in the Experimental section.

Compound 4 is common among secondary metabolites produced by fungi of the Xylariaceae, but different optical rotations have been published. Whereas for the product of *Xylaria longipes* a negative rotation (– 89°, c 1.0 methanol) has been reported (Anderson *et al.*, 1985), the rotation of the sample isolated from *Xylaria longipes*, A19–91, in this investigation was + 71° (c 1.3 chloroform). Thus our strain produced the enantiomer.

The biological activities of the isolated Xylaria metabolites towards fungi, bacteria, cells, plant germination, nematodes and bovine erythrocytes, were investigated. The antifungal activity (Table I) of xylaramide (1) is high towards Nematospora coryli and Saccharomyces cerevisiae is 1, a permeation deficient mutant. The other yeasts and the following filamentous fungi were not sensitive at concentrations up to 100 µg/ml: Fusarium oxysporum, Mucor miehei, Paecilomyces variotii, Penicillium notatum and Ustilago nuda. The difference in sensitivity of the two Saccharomyces cerevisiae strains indicates that xylaramide can not enter the cells of most yeasts. Whether this holds for filamentous fungi is not known. A degradation and inactivation of xylaramide by a dipeptidase is also conceivable. The selectivity and the lack of apparent reactive chemical functionalities in the structure of xylaramide (1) obviously makes it interesting for further studies. The other metabolites exhibited only weak antifungal activities against veasts and did not affect the growth of the filamentous fungi mentioned above. There was no or only a weak cytotoxic activity of the compounds

Table I. The antifungal activity (MIC) of compound **1–4** in the serial dilution assay. (Size of inoculum: 1x10⁵ cells or spores/ml).

			MIC [µg/ml]		
Organism	Compound:	1	2	3	4
Yeasts:					
Nadsonia fulvescens		>100	>100	>100	>100
Nematospora coryli		1	100	25s,50	>100
Rhodotorula glutinis		>100	>100	>100	>100
Saccharomyces cerevisiae S 288 c		>100	>100	>100	>100
S. cerevisiae is 1		5	100s	100s	>100

s: Fungistatic, the growth restarted after removal of the compound.

against BHK 21 cells, HeLa S3 cells, HL60 cells and L1210 cells. Whereas xylaramide (1) was cytotoxic against BHK 21 cells, HeLa S3 cells and HL60 cells at 100 μg/ml, the furan 3 only affected HL60 cells. For all compounds no antibacterial activity (up to concentrations of 100 µg/ml) was detected with the following organisms: Acinetobacter calcoaceticus, Arthrobacter citreus, Bacillus brevis, B. subtilis, Corvnebacterium insidiosum, Escherichia coli K12, Micrococcus luteus, Mycobacterium phlei, Salmonella typhimurium TA 98, and Streptomyces spec. ATCC 23836. The plant germination of Lepidium sativum and Setaria italica was not affected by all compounds at concentrations up to 600 µg/ml but the growth of Lepidium sativum seedlings was reduced by the compounds 1, 2 and 4. The phytotoxic effect of compound 2 has been previously reported (Devys et al., 1976). At 100 ug/ml none of the compounds showed nematicidal activity towards Caenorhabditis elegans and Meloidogyne incognita and they had no lytic effect on bovine erythrocytes.

As shown in this publication *Xylaria longipes*, A19–91, is a rich source of secondary metabolites which are derived from different biochemical pathways. Besides the compounds described in this publication, xylarin, a diterpene connected to an unusual glucuronic acid moiety (Schneider *et al.*, 1995) and mellein (Schneider, unpublished) were isolated. The production of secondary metabolites with high antifungal activities by *Xylaria longipes* could be a useful tool against competitors in its ecological niche.

Acknowledgments

The financial support from the state of Rheinland-Pfalz, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Bonn, the BASF AG, Ludwigshafen, the DAAD, Bonn, and the Swedish Natural Science Research Council is gratefully acknowledged. We are grateful to Dr. W.-R. Arendholz, Kaiserslautern, for taxonomic advice. We thank R. Reiss for expert technical assistance.

- Anderson J. R., Edwards R. L. and Whalley A. J. S. (1985), Metabolites from higher fungi. Part 22. 2-Butyl-3-methylsuccinic acid and 2-hexylidene-3-methylsuccinic acid from xylariaceous fungi. J. Chem. Soc. Perkin Trans. 1, 1481–1485.
- Anke H., Bergendorff O. and Sterner O. (1989), Assays of the biological activities of guaiane sesquiterpenoids isolated from the fruit bodies of edible *Lactarius* species. Food Chem. Toxicol. **27**, 393–398.
- Anke H., Stadler M., Mayer A. and Sterner O. (1995), Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and ascomycetes. Can. J. Bot. 73, (Suppl.1), S932–939.
- Ayer W. A., Browne L. M., Feng M.-C., Orszanska H. and Saeedi-Ghomi H. (1986), The chemistry of the blue stain fungi. Part 1. Some metabolites of *Ceratocystis* species associated with mountain pine beetle infected lodgepole pine. Can. J. Chem. 64, 904–909.
- Catechside D. E. A. and Mallett K. J. (1991), Solubilization of Australien lignites by fungi and other microorganisms. Energy fuels, **5** (1), 141–145.
- Cross B. E., Galt R. H. B., Hanson J. R. and (in part) Curtis P. J., Grove J. F. and Morrison A. (1963), New metabolites of *Gibberella fujikuroi*. Part II. The isolation of fourteen new metabolites. J. Chem. Soc., 2937–2943.

- Dagne E., Gunatilaka A. A. L., Asmellash S., Abate D., Kingston D. G. I., Hofmann G. A. and Johnson R. K. (1994), Two new cytotoxic cytochalasins from *Xylaria obovata*. Tetrahedron **50**, 5615–5620.
- Devys M., Bousquet J. F. and Barbier M. (1976), Le tyrosol (p-hydroxyphényléthanol), inhibiteur de la germination isolé du milieu de culture de *Pyricularia oryzae*. Phytopath. Z. **85**, 176–178.
- Edwards R. E., Maitland D. J. and Whalley A. J. S. (1991), Metabolites of the higher fungi. Part 26. Cubensic acid, 3,7,11,15-tetrahydroxy-18-(hydroxymethyl)-2,4,6,10,14,16,20-heptamethyldocosa-
- 4*E*,8*E*,12*E*,16*E*-tetraenoic acid, a novel polysubstituted C22 fatty acid from the fungus *Xylaria cubensis* (Mont.) Fr. with substituents and substitution patterns similar to the macrolide antibiotics. J. Chem. Soc. Perkin Trans. **1**, 755–760.
- Kuschel A., Anke T., Velten R., Klostermeyer D., Steglich W. and König B. (1994), The mniopetals, new inhibitors of the reverse transcriptases from a *Mniopetalum* species (Basidiomycetes). J. Antibiotics **47**, 733–739
- Lingappa B. T., Prasad M. and Lingappa Y. (1969), Phenylethyl alcohol and tryphtophol: Autoantibiotics produced by the fungus *Candida albicans*. Science **163**, 192–194.

- Nilsson T., Daniel G., Kirk T. K. and Obst J. R. (1989), Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung **43**, 11–17.
- O'Hagan D., Rogers S. V., Duffin G. R. and Edwards R. L. (1992), Biosynthesis of the fungal polyketide, cubensic acid from *Xylaria cubensis*. Tetrahedron Letters **33**, 5585–5588.
- Schneider G., Anke H. and Sterner O. (1995), Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat. Prod. Lett. 7, 309–316.
- Siebers-Wolff S., Arfmann H.-A., Abraham W.-R. and Kieslich K. (1993), Microbiological hydroxylation and N-oxidation of cinchona alkaloids. Biocatalysis **8**, 47–58.
- Song K.-S., Cho S.-M., Ko K.-S., Han M.-W. and Yoo I.-D. (1994), Secondary metabolites from the mycelial culture broth of *Phellinus linteus*. Han'guk Nonghwa Hakhoechi **37**, 100–104.
- Stadler M., Anke H. and Sterner O. (1993), Linoleic acid the nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch. Microbiol. **160**, 401–405.

- Veer W. L. C., Oud P. J. and Ribbers J. E. (1957), The isolation of 2-(4'-hydroxyphenyl)ethanol from *Ligustrum ovalifolium* Hassk. leaves. J. R. Neth. Chem. Soc. **76**, 810–812.
- Wei D. L., Chang S. C., Wei Y. H., Lin Y. W., Chuang C. L. and Jong S. C. (1992), Production of cellulolytic enzymes from the *Xylaria* and *Hypoxylon* species of Xylariaceae. World J. Microbiol. Biotechnol. 8, 141–146
- Whalley A. J. S. and Edwards R. L. (1986), Xylariaceous fungi: use of secondary metabolites. Symp. Brit. Mycol. Soc., 422–434.
- Whalley A. J. S. and Edwards R. L. (1995), Secondary metabolites and systematic arrangement within the Xylariaceae. Can. J. Bot. 73 (Suppl. 1), S802–810.
- Zapf S., Hoßfeld M., Anke H., Velten R. and Steglich W. (1995), Darlucins A and B, new isocyanide antibiotics from *Sphaerellopsis filum* (*Darluca filum*). J. Antibiotics **48**, 36–41.